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ABSTRACT

In this paper, we present a new automatic robust algorithm
to segment multimodal brain MR images with Multiple Scle-
rosis (MS) lesions. The method performs tissue classifica-
tion using a Hidden Markov Chain (HMC) model and detects
MS lesions as outliers to the model. For this aim, we use
the Trimmed Likelihood Estimator (TLE) to extract outliers.
Furthermore, neighborhood information is included using the
HMC model and we propose to incorporate a priori infor-
mation brought by a probabilistic atlas. Tests on Brainweb
images with MS lesions have been carried out to validate this
approach.

Index Terms— Image segmentation, Hidden Markov
models, robustness, Magnetic Resonance Imaging

1. INTRODUCTION

Multiple Sclerosis (MS) is a disorder of the central nervous
system. To better understand this disease and to quantify its
evolution, magnetic resonance imaging (MRI) is increasingly
used nowadays. Nevertheless, manual delineation of lesion
by human experts is a time-consuming process and is prone
to intra- and inter-observer variability, which deteriorates the
significance of the resulting segmentation analysis. Therefore
fully automated and reproducible methods are required to seg-
ment MS lesions in multimodal MR sequences. MS lesions
are often detected as voxels that are not well explained by a
statistical model for normal brain MR images.
In [1], Schroeter et al. use Gaussian mixtures to model

the presence of different components within each voxel, and
to robustify the estimation scheme, they add a class of outliers
with a uniform distribution corresponding to lesions. In [2],
Van Leemput et al. introduce weights reflecting the degree of
typicality of each voxel. Their method also includes neigh-
borhood information using a Potts model. In this paper, we
propose to keep neighborhood information during the infer-
ence process by using a Hidden Markov Chain model taking
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into account a priori information brought by a probabilistic
atlas, and detecting outliers using the Trimmed Likelihood
Estimator.
This paper is organized as follows: next section intro-

duces the Hidden Markov Chain model and explains how
information brought by a probabilistic atlas is incorporated
to help the segmentation process. Section 3 presents the
Trimmed Likelihood Estimator (TLE) used to detect outliers
corresponding to ME lesions. In section 4, we apply such
estimator to the HMC model for MS lesion detection: results
obtained on Brainweb images are shown in section 5. Finally
in section 6, conclusions are drawn and future developments
are suggested.

2. ROBUST HIDDEN MARKOV CHAIN
SEGMENTATION USING PROBABILISTIC ATLAS

To segment Brain MRI, we propose to use Hidden Markov
Chains (HMC) by using a 3D Hilbert-Peano scan of the data
cube [3]. HMC is a method based on neighborhood infor-
mation which has been widely used to segment 2D images
(see e.g. [4]). Neighborhood information is included in the
HMC model. The interest of Markov Chain methods for
image segmentation compared to 3D Markov Random Field
(MRF) models is that being based on 1D modeling, they re-
sult in lower computing costs with similar results. Contrary
to MRF, the neighboring information is partially translated
in the chain: two neighbors in the chain are neighbors in
the grid, but two neighbors in the cube can be far away in
the chain. However, due to strong correlation within the
data cube, this scan will weakly influence the segmentation
results. The first step of segmentation algorithms based on
HMC consists in transforming the image into a vector[3].
Once all the processing has been carried out on the vector,
the inverse transformation is applied on the segmented chain
to obtain the final segmented image.
Let us now consider two sequences of random variables

X = (Xn)n∈S the hidden process, and Y = (Yn)n∈S the
observed one, with S the finite set corresponding to the N
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Fig. 1. Dependency graph of HiddenMarkov Chain with atlas
information

voxels of the image. Each Xn takes its value in a finite
set of K classes Ω = {ω1, . . . , ωK} and each Yn takes its
value in R. For this application, we have K = 3 classes
Ω = {WM, GM,CSF} where WM , GM and CSF de-
note respectively white matter, gray matter and cerebrospinal
fluid. X is a Markov Chain if P (Xn+1 = ωkn+1

|Xn =
ωkn

, . . . , X1 = ωk1
) = P (Xn+1 = ωkn+1

|Xn = ωkn
).

Thus X will be determined by the initial distribution πk =
P (X1 = ωk) and the transition matrix an

kl = P (Xn+1 =
ωl|Xn = ωk). We assume the homogeneity of the Markov
Chain which means that the transition matrix is independent
of the location n: an

kl = akl, for 1 ≤ n < N .
The likelihood fk(yn; θ) = P (Yn = yn|Xn = ωk) of the

observation yn conditionally to Xn = ωk is assumed to be
a Gaussian density with mean μk ∈ {μ1, . . . , μK} and vari-
ance σ2

k = {σ2
1 , . . . , σ2

K}. These parameters are clustered in
θ. A priori information brought by a probabilistic atlas is in-
troduced in the model to drive the segmentation process. This
atlas derived from 31 normal brains which were registrated
using a non-rigid transformation [5] and segmented using a
HMCmodel [6]. Then these different segmentations were av-
eraged to obtain the atlas. This atlas contains probability in-
formation about the expected location of WM, GM, and CSF.
The different probabilities in each voxel n calculated during
the HMC algorithm were multiply by the prior probability
bn(k) of this voxel to belong to class k given by the atlas in
the HMC modeling. The dependency graph of a HMC is pre-
sented in Fig. 1. One of the interests of Hidden Markov Chain
is the possibility of computing exactly the posterior marginals
at each location and to obtain a labeling x̂ of the image by us-
ing the posterior probability [7]:

x̂n = arg max
ωk∈Ω

P (Xn = ωk|Y = y) (1)

= arg max
ωk∈Ω

αn(k)βn(k) (2)

with αn(k) = P (Xn = ωk, Y1, . . . , Yn) forward probabil-
ity and βn(k) = P (Yn+1, . . . , YN |Xn) backward probabil-
ity. These probabilities can be computed recursively [8]. This
recursive computation is detailed in Sec 4 in the robust case.

3. TRIMMED LIKELIHOOD ESTIMATOR

We detect MS lesions as outliers toward statistical model of
normal brain images. To extract these outliers and to estimate
the parameters of the different classes in a robust way, the
Trimmed Likelihood Estimator (TLE) was used. The TLE
was introduced in [9] and developed to estimate mixture of
multivariate normals and generalized linear models in a robust
way [10]. The main idea lies in removing the n− h observa-
tions whose values would be highly unlikely to occur if the
fitted model was true. The optimization scheme used to com-
pute this estimator derives from the optimization scheme of
the Least Trimmed Squares (LTS) estimators of Rousseeuw
and Leroy [11]. This algorithm was used to segment brain
MRI by Aı̈t-Ali in the frame of Gaussian mixtures without
including neighborhood and atlas information [12].

3.1. Trimmed Likelihood Estimator

The Trimmed Likelihood Estimator (TLE) [13] is defined as:

θ̂TLE = arg min
θ∈Θp

h∑

i=1

ψ(yν(i); θ) (3)

where for a fixed θ, ψ(yν(1); θ) ≤ ψ(yν(2); θ) ≤ . . . ≤
ψ(yν(n); θ), ψ(yi; θ) = − log f(yi; θ), yi ∈ R

q for i =
1, . . . , n are i.i.d observations with probability density f(y, θ)
depending on an unknown parameter θ ∈ Θp ⊂ R

p. ν =
(ν(1), . . . , ν(n)) is the corresponding permutation of the in-
dices, which depends on θ, and h is the trimming parameter.

θ̂TLE = arg max
θ∈Θp

h∏

i=1

f(yν(i); θ) (4)

General conditions for the existence of a solution of (Eq. 3)
are proved in [14]. Convergence and asymptotic properties
are studied in [15].

3.2. FAST-TLE algorithm

In [16], Neykov and Müller develop a fast iterative algorithm
for derivation of the TLE. This FAST-TLE algorithm can
be described as follows: given Hold = {yj1 , . . . , yjn

} ⊂
{y1, . . . , yn},

• Compute θ̂old := MLE (Maximum Likelihood Esti-
mator) based on Hold.

• Define Qold =
∑k

i=1 ψ(yji
, θ̂old).

• Sort ψ(yi, θ̂
old) for i = 1, . . . , n in ascending order:

ψ(yν(i), θ̂
old) ≤ ψ(yν(i+1), θ̂

old) and get the permuta-
tion ν = (ν(1), . . . , ν(n)).

• Define Hnew = {yν(1), . . . , yν(n)}.
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• Compute θ̂new := MLE based on Hnew.

• Define Qnew =
∑k

i=1 ψ(yν(i), θ̂
new).

4. PROPOSED FRAMEWORK

To estimate parameters in a robust way and to detect le-
sions, we thus adapt the FAST-TLE algorithm presented in
Sec. 3.2 to the HMC model. We use the following notations:
fk(yn; θ) = P (Yn = yn|Xn = ωk) denotes the likelihood
of the observation yn conditionally to Xn = ωk and bn(k)
represents the prior probability of voxel n to belong to class
k given by the atlas B. This leads to:

1. Compute θ̂(p−1) := MLE using the Expectation-
Maximization (EM) algorithm [17], based on the whole
dataset;

2. Sort residus rn = − log f(yn, bn; θ̂(p−1)) = − log P (Yn =

yn, Bn, θ̂(p−1)) for n = 1, . . . , N with:

P (Yn = yn, Bn, θ̂(p−1)) =
∑

ωk
P (Yn = yn, Bn,

Xn = ωk, θ̂(p−1))

=
∑

ωk
P (Xn = ωk)bn(k)

fk(yn; θ̂(p−1)) (5)

3. Define H(p) = {yν(1), ..., yν(h)} the subset containing
the h vectors with the lowest residus for θ̂(p−1);

4. Compute θ̂(p) := MLE using EM, based onH(p). We
assign the likelihood of data considered as outliers to
one, i.e. fk(yn) = 1,∀k in the HMC process. On the
location where the data is considered as an outlier, only
prior distribution takes place in the labeling process.
Calculation of the different probabilities becomes:

• Forward probabilities:
– α1(k) = πkfk(y1; θ̂

(p))b1(k)

– αn(k) =
∑K

l=1 αn−1(l)alkfk(yn; θ̂(p))bn(k)

with fk(yn, θ̂(p)) = 1 if yn is considered as
an outlier.

• Backward probabilities:
– βN (k) = 1

– βn(k) =
∑K

l=1 βn+1(l)aklfl(yn+1; θ̂
(p))bn+1(l)

with fl(yn+1, θ̂
(p)) = 1 if yn+1 is considered

as an outlier.
• a posteriori joint probabilities:

ξn(i, j) = P (Xn = ωi, Xn+1 = ωj |Y = y,B)

=
αn−1(j)ajifi(yn, θ̂(p))bn(i)βn(i)∑

k αn(k)

• a posteriori marginal probabilities:
γn(i) = P (X1 = ωi|Y1, ..., YN ) = αn(i)βn(i)P

j
αN (j)

• μi =
P

n1
γn1

(i)yn1P
n1

γn1
(i) with yn1

belonging to the

subset H(p).

• σi =
P

n1
γn1

(i)(yn1
−μi)(yn1

−μi)
t

P
n1

γn1
(i) with yn1

be-

longing to the subset H(p).

5. Back to step 2 until convergence ofH(p).

The main drawback of this approach is that the trim-
ming parameter h representing the percentage of voxels used
to estimate the parameters has to be fixed by the user. To
carry out this problem, we propose to use an adaptative
trimming parameter and a threshold s for the probability
P (Yn = yn, Bn, θ) (Eq. 5). At each iteration, the voxels
for which the probability P (Yn = yn, Bn, θ) is lower than
the threshold s are considered as outliers to the model and
not included in HMC parameter estimation. In this case, the
trimming parameter h will change at each iteration.
Outlier voxels also occur outside MS lesions, especially

in the CSF class. Thus to remove these outliers which are
not MS lesions, a post-processing step was added to our algo-
rithm. Outliers for which the prior probability of CSF given
by the atlas is higher than 0.5 were removed and lesions with
a small volume (3mm3) were excluded.

5. VALIDATION

We applied the robust HMC model presented in previous sec-
tion to brain MRI segmentation. This method has been tested
on the Brainweb database1 [18] which offers a large amount
of different phantoms of multimodal MR brain images with
MS lesions with different noise and non-uniformity levels.
From these phantoms, the tissue classification in WM, GM,
CSF and MS lesion is known. To evaluate the performance of
our algorithm, we use the Kappa index (KI):

KI = 2
SEG

⋂
GT

SEG + GT
(6)

where GT stands for the ground truth and SEG for the seg-
mentation obtained.
The method was tested on T1/T2 images with 3 and 5% of

noise and 20% inhomogeneity level for different values of the
threshold s. Comparisons of the results for lesions segmenta-
tion with and without atlas information are presented in Fig. 2
for 3 and 5% of noise. The highest Kappa index obtained for
3% (respectively 5%) of noise without atlas information is
77.2% (respectively 74%), whereas the highest Kappa index
obtained for 3% (respectively 5%) of noise with atlas infor-
mation has a value of 78.2% (respectively 76.9%). Segmen-
tation obtained using atlas information yields the best results.

1http://www.bic.mni.mcgill.ca/brainweb/
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Moreover the threshold used to obtain the highest Kappa in-
dex is lower using atlas information. This means that lesions
are better and easier detected using atlas information.

(a) (b)

Fig. 2. Kappa index for lesions obtained on T1/T2 Brainweb
images for different values of the threshold parameter s with
and without atlas information. (a) and (b) correspond respec-
tively to the results obtained for 3% and 5% of noise. Lesions
are better detected using atlas information.

6. CONCLUSION AND OUTLOOK

We have described a robust framework for tissue classifica-
tion of multimodal brain MR images and MS lesions detec-
tion. Hidden Markov Chains were used to include neighbor-
hood information in the model. This spatial regularization is
required to overcome the disturbance added during the MRI
formation. Moreover a priori information was introduced us-
ing a probabilistic atlas and lesion extraction was carried out
using the Trimmed Likelihood Estimator and an adaptative
threshold. This model has been validated for lesion detection
on 3D multimodal brain phantoms with MS lesions, and will
be applied to segment real brain images with MS lesions and
compared to manual expert segmentation.
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